Mind bomb 1 regulation of cFLIP interactions.

نویسندگان

  • Liguo Zhang
  • Patricia J Gallagher
چکیده

Mind bomb 1 (Mib1) is a multidomain E3 ligase that directs ubiquitination of the Notch ligands Delta and Jagged to promote their endocytosis. Here we examine Notch-independent functions of Mib1 and find that its activities are linked to the initiation of the extrinsic cell death pathway. Expression of Mib1 induces a spontaneous, caspase-dependent cell death. Consistent with this, depletion of endogenous Mib1 decreases tumor-necrosis factor (TNF)-induced cell death. Mib1 was found to bind to cellular Fas-associated death domain (FADD)-like IL-1b converting enzyme (FLICE)-like inhibitory proteins (cFLIP-L and cFLIP-S), whereas only cFLIP-s can inhibit Mib1-induced cell death. The interaction between Mib1 and cFLIP decreases the association of caspase-8 with cFLIP, which activates caspase-8 and induces cell death. Collectively, these results suggest that in addition to a central role in Notch signaling, Mib1 has an important role in regulating the extrinsic cell death pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Classes of Mind Bomb-Interacting Proteins Identified from Yeast Two-Hybrid Screens

Notch signaling pathway defines an evolutionarily conserved mechanism in cell-fate determination in a broad spectrum of developmental processes through local cell interactions. mind bomb (mib) encodes an E3 ubiquitin ligase that is involved in Notch activation through Delta ubiquitylation and internalization. To further dissect the function of Mib, two yeast two-hybrid screens for zebrafish Mib...

متن کامل

Eicosapentaenoic acid protects endothelial cells against anoikis through restoration of cFLIP.

Dietary supplementation with eicosapentaenoic acid (EPA) improves the prognosis of chronic inflammatory diseases, including atherosclerosis. The mechanism underlying these beneficial effects, however, remains to be elucidated. Here we show that EPA protects endothelial cells from anoikis through upregulation of the cellular FLICE (Fas-associating protein with death domain-like interleukin-1-con...

متن کامل

Correction: The Multikinase Inhibitor Sorafenib Potentiates TRAIL Lethality in Human Leukemia Cells in Association with Mcl-1 and cFLIPL Down-regulation.

Interactions between the multikinase inhibitor sorafenib and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) were examined in malignant hematopoietic cells. Pretreatment (24 h) of U937 leukemia cells with 7.5 micromol/L sorafenib dramatically increased apoptosis induced by sublethal concentrations of TRAIL/Apo2L (75 ng/mL). Similar interactions were observed in Raji, Jurkat, Kar...

متن کامل

Expression of cellular FLICE inhibitory proteins (cFLIP) in normal and traumatic murine and human cerebral cortex.

Cellular Fas-associated death domain-like interleukin-1-beta converting enzyme (FLICE) inhibitory proteins (cFLIPs) are endogenous caspase homologues that inhibit programmed cell death. We hypothesized that cFLIPs are differentially expressed in response to traumatic brain injury (TBI). cFLIP-alpha and cFLIP-delta mRNA were expressed in normal mouse brain-specifically cFLIP-delta (but not cFLIP...

متن کامل

FLIP the Switch: Regulation of Apoptosis and Necroptosis by cFLIP

cFLIP (cellular FLICE-like inhibitory protein) is structurally related to caspase-8 but lacks proteolytic activity due to multiple amino acid substitutions of catalytically important residues. cFLIP protein is evolutionarily conserved and expressed as three functionally different isoforms in humans (cFLIPL, cFLIPS, and cFLIPR). cFLIP controls not only the classical death receptor-mediated extri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 297 5  شماره 

صفحات  -

تاریخ انتشار 2009